Environmental Protection Agency

APPENDIXES II-III TO PART 264 [RESERVED]

APPENDIX IV TO PART 264—COCHRAN'S APPROXIMATION TO THE BEHRENS-FISHER STUDENTS' T-TEST

Using all the available background data (n_b readings), calculate the background mean (X_b) and background variance (s_b2). For the single monitoring well under investigation (n_m reading), calculate the monitoring mean (X_m) and monitoring variance (s_m2).

For any set of data (X_1, X_2, \ldots, X_n) the mean is calculated by:

$$\overline{X} = \frac{X_1 + X_2 \cdot \cdot \cdot + X_n}{n}$$

and the variance is calculated by:

$$s^2 = \frac{\left(X_1 - \overline{X}\right)^2 + \left(X_2 - \overline{X}\right)^2 \cdots + \left(X_n - \overline{X}\right)^2}{n - 1}$$

where "n" denotes the number of observations in the set of data.

The t-test uses these data summary measures to calculate a t-statistic (t*) and a comparison t-statistic (t_c). The t* value is compared to the $t_{\rm c}$ value and a conclusion reached as to whether there has been a statistically significant change in any indicator parameter.

The t-statistic for all parameters except pH and similar monitoring parameters is:

$$t^* = \frac{X_m - \overline{X}_s}{\sqrt{\frac{S_m^2}{n_m} + \frac{S_b^2}{n_b}}}$$

If the value of this t-statistic is negative then there is no significant difference between the monitoring data and background data. It should be noted that significantly small negative values may be indicative of a failure of the assumption made for test validity or errors have been made in collecting the background data.

The t-statistic (t_c), against which t* will be compared, necessitates finding t_b and t_m from standard (one-tailed) tables where,

 t_b = t-tables with (n_b-1) degrees of freedom, at the 0.05 level of significance.

 $t_{\rm m}$ = t-tables with $(n_{\rm m}\!-\!1)$ degrees of freedom, at the 0.05 level of significance.

Finally, the special weightings W_{b} and W_{m} are defined as:

$$W_B = \frac{s_{b^2}}{n_b} \quad \text{and} \quad W_m = \frac{s_{m^2}}{n_m}$$

and so the comparison t-statistic is:

$$t_c = \frac{W_b t_b + W_m t_m}{W_b + W_m}$$

The t-statistic (t*) is now compared with the comparison t-statistic (t_c) using the following decision-rule:

If $t^{\bar{x}}$ is equal to or larger than t_c , then conclude that there most likely has been a significant increase in this specific parameter.

If t^* is less than t_c , then conclude that most likely there has not been a change in this specific parameter.

The t-statistic for testing pH and similar monitoring parameters is constructed in the same manner as previously described except the negative sign (if any) is discarded and the caveat concerning the negative value is ignored. The standard (two-tailed) tables are used in the construction $t_{\rm c}$ for pH and similar monitoring parameters.

If t^* is equal to or larger than t_c , then conclude that there most likely has been a significant increase (if the initial t^* had been negative, this would imply a significant decrease). If t^* is less than t_c , then conclude that there most likely has been no change.

A further discussion of the test may be found in *Statistical Methods* (6th Edition, Section 4.14) by G. W. Snedecor and W. G. Cochran, or *Principles and Procedures of Statistics* (1st Edition, Section 5.8) by R. G. D. Steel and J. H. Torrie.

STANDARD T—TABLES 0.05 LEVEL OF SIGNIFICANCE

Degrees of freedom	t-values (one-tail)	t-values (two-tail)
1	6.314	12.706
2	2.920	4.303
3	2.353	3.182
4	2.132	2.776
5	2.015	2.571
6	1.943	2.447
7	1.895	2.365
8	1.860	2.306
9	1.833	2.262
10	1.812	2.228
11	1.796	2.201
12	1.782	2.179
13	1.771	2.160
14	1.761	2.145
15	1.753	2.131
16	1.746	2.120
17	1.740	2.110
18	1.734	2.101
19	1.729	2.093
20	1.725	2.086
21	1.721	2.080
22	1.717	2.074

Pt. 264, App. V

40 CFR Ch. I (7-1-20 Edition)

STANDARD T—TABLES 0.05 LEVEL OF SIGNIFICANCE—Continued

Degrees of freedom	t-values (one-tail)	t-values (two-tail)
23	1.714	2.069
24	1.711	2.064
25	1.708	2.060
30	1.697	2.042

STANDARD T—TABLES 0.05 LEVEL OF SIGNIFICANCE—Continued

Degrees of freedom	t-values (one-tail)	t-values (two-tail)
40	1.684	2.021

Adopted from Table III of "Statistical Tables for Biological, Agricultural, and Medical Research" (1947, R. A. Fisher and F. Yates).

[47 FR 32367, July 26, 1982]

APPENDIX V TO PART 264—EXAMPLES OF POTENTIALLY INCOMPATIBLE WASTE

Many hazardous wastes, when mixed with other waste or materials at a hazardous waste facility, can produce effects which are harmful to human health and the environment, such as (1) heat or pressure, (2) fire or explosion, (3) violent reaction, (4) toxic dusts, mists, fumes, or gases, or (5) flammable fumes or gases.

Below are examples of potentially incompatible wastes, waste components, and materials, along with the harmful consequences which result from mixing materials in one group with materials in another group. The list is intended as a guide to owners or operators of treatment, storage, and disposal facilities, and to enforcement and permit granting officials, to indicate the need for special precautions when managing these potentially incompatible waste materials or components.

This list is not intended to be exhaustive. An owner or operator must, as the regulations require, adequately analyze his wastes so that he can avoid creating uncontrolled substances or reactions of the type listed below, whether they are listed below or not.

It is possible for potentially incompatible wastes to be mixed in a way that precludes a reaction (e.g., adding acid to water rather than water to acid) or that neutralizes them (e.g., a strong acid mixed with a strong base), or that controls substances produced (e.g., by generating flammable gases in a closed tank equipped so that ignition cannot occur, and burning the gases in an incinerator).

In the lists below, the mixing of a Group A material with a Group B material may have the potential consequence as noted.

GROUP 1-A

Acetylene sludge
Alkaline caustic liquids
Alkaline cleaner
Alkaline corrosive liquids
Alkaline corrosive battery fluid
Caustic wastewater
Lime sludge and other corrosive alkalies
Lime wastewater
Lime and water

Spent caustic

GROUP 1-B

Acid sludge
Acid and water
Battery acid
Chemical cleaners
Electrolyte, acid
Etching acid liquid or solvent
Pickling liquor and other corrosive acids
Spent acid
Spent mixed acid
Spent sulfuric acid

Potential consequences: Heat generation; violent reaction.

GROUP 2-A

Aluminum
Beryllium
Calcium
Lithium
Magnesium
Potassium
Sodium
Zinc powder
Other reactive metals and metal hydrides

GROUP 2-B

Any waste in Group 1-A or

1–B

Potential consequences: Fire or explosion; generation of flammable hydrogen gas.

GROUP 3-A

Alcohols Water

Group 3-B

Any concentrated waste in Groups 1–A or 1–B Calcium Lithium Metal hydrides Potassium SO₂ Cl₂, SOCl₂, PCl₃, CH₃ SiCl₃ Other water-reactive waste Potential consequences: Fire, explosion, or heat generation; generation of flammable or toxic gases.